From Cell Differentiation to Cell Collectives: Bacillus subtilis Uses Division of Labor to Migrate

نویسندگان

  • Jordi van Gestel
  • Hera Vlamakis
  • Roberto Kolter
چکیده

The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sporulation: SpoIIIE Is the Key to Cell Differentiation

Sporulation in Bacillus subtilis requires asymmetric cell division, chromosome transfer into the spore and establishment of differential gene expression patterns. Several recent studies highlight the key roles of the SpoIIIE motor in this process.

متن کامل

Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm

Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that s...

متن کامل

Pulsed Feedback Defers Cellular Differentiation

Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient ...

متن کامل

An oscillating Min system in Bacillus subtilis influences asymmetrical septation during sporulation

The Min system plays an important role in ensuring that cell division occurs at mid-cell in rod-shaped bacteria. In Escherichia coli, pole-to-pole oscillation of the Min proteins specifically inhibits polar septation. This system also prevents polar division in Bacillus subtilis during vegetative growth; however, the Min proteins do not oscillate in this organism. The Min system of B. subtilis ...

متن کامل

PBP1 is a component of the Bacillus subtilis cell division machinery.

Bacillus subtilis penicillin-binding protein PBP1 has been implicated in cell division. We show here that a PBP1 knockout strain is affected in the formation of the asymmetric sporulation septum and that green fluorescent protein-PBP1 localizes to the sporulation septum. Localization of PBP1 to the vegetative septum is dependent on various cell division proteins. This study proves that PBP1 for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015